
A Deep Dive into AI at Scale - Part 2

OCTOBER 21ST, 2025

VÄINÖ HATANPÄÄ

Assistant Computer Scientist
ALCF

Recap: Data Parallelism

▪ Each GPU has an identical copy of the model

▪ Each GPU has unique data sample

Why?

▪ Training on a single GPU can be slow

Drawbacks:

▪ More complex to implement

▪ Requires communication

Diagrams by Sam Foreman

Recap: Data Parallelism

▪ Each GPU has an identical copy of the model

▪ Each GPU has unique data sample

Why?

▪ Training on a single GPU can be slow

Drawbacks:

▪ More complex to implement

▪ Requires communication

Diagrams by Sam Foreman

Recap: Data Parallelism

▪ Each GPU has an identical copy of the model

▪ Each GPU has unique data sample

Why?

▪ Training on a single GPU can be slow

Drawbacks:

▪ More complex to implement

▪ Requires communication

Diagrams by Sam Foreman

Recap: Data Parallelism

▪ Each GPU has an identical copy of the model

▪ Each GPU has unique data sample

Why?

▪ Training on a single GPU can be slow

Drawbacks:

▪ More complex to implement

▪ Requires communication

Diagrams by Sam Foreman

Beyond data parallelism

▪ Data parallelism is very helpful when the model and the

data fits into the memory of a single GPU and can be

trained reasonably fast

▪ In the case of large language models (LLMs), the model

sizes can be billions of parameters, requiring significant

amount of memory

▪ Model parallelism can help!

Collectives

▪ GPUs can communicate

with each other with

various collective

operations

▪ Implemented with a

collective communication

library such as Nvidia

Collective

Communications Library

(NCCL)

Diagrams by Sam Foreman

FSDP and ZeRO

DeepSpeed ZeRO

▪ Memory required also for gradients and

optimizer states (e.g. momentum, variance)

— Parameters (BF16): 2 bytes per parameter

—Gradients (BF16): 2 bytes per parameter

—Optimizer states (FP32): 3x4=12 bytes per

parameter

— Total of >=16 bytes per parameter, so at

least 112GB for 7B parameter model, more

than most GPUs

https://www.deepspeed.ai/tutorials/zero/
https://www.deepspeed.ai/tutorials/zero/

FSDP and ZeRO

PyTorch FSDP

▪ FSDP distributes parameters, gradients, and optimizer states across data-parallel

workers

— Various settings can be configured and the exact behavior can be adjusted

https://docs.pytorch.org/tutorials/intermediate/FSDP_tutorial.html
https://docs.pytorch.org/tutorials/intermediate/FSDP_tutorial.html

Tensor Parallelism (TP)

▪ Each tensor is split up into multiple chunks

▪ Each shard of the tensor resides on its designated GPU

▪ During processing each shard gets processed

separately (and in parallel) on different GPUs

— synced at the end of the step

▪ Challenges:

— Implementation

—Communication overhead

—Reduced compute kernel efficiency

▪ See: Model Parallelism for additional details

Most slide contents by Sam Foreman

https://huggingface.co/docs/transformers/v4.15.0/parallelism
https://huggingface.co/docs/transformers/v4.15.0/parallelism
https://samforeman.me/talks/ai-for-science-2024/slides#/tensor-parallel-tp

Pipeline Parallelism

▪ Model is split up vertically (layer-level)

across multiple GPUs

▪ Each GPU:

— has a portion of the full model

— processes in parallel different stages

of the pipeline (on a small chunk of

the batch)

▪ See:

— PyTorch / Pipeline Parallelism

—DeepSpeed / Pipeline Parallelism

Most slide contents by Sam Foreman

1F1B schedule

Challenge:

Scheduling and

“Pipeline Bubble”

https://pytorch.org/docs/main/distributed.pipelining.html
https://deepspeed.readthedocs.io/en/latest/pipeline.html
https://deepspeed.readthedocs.io/en/latest/pipeline.html
https://samforeman.me/talks/ai-for-science-2024/slides#/tensor-parallel-tp
https://www.researchgate.net/figure/llustration-of-1F1B-microbatch-scheduling-in-PipeDream-Image-based-on-48_fig4_362249737

Sequence/Context/Expert parallelism
Model architecture and application specific forms of

parallelism

▪ Sequence parallelism (SP):

An extension of tensor parallelism (typically for

LLMs), where the input sequence is scattered and

gathered for specific operations

▪ Context parallelism:

Like SP but shards the sequence across all layers,

including the attention, implemented with ring

attention

▪ Expert parallelism:

Specific for Mixture of Experts (MoE) models, where

different “experts” are placed on different GPUs

https://arxiv.org/pdf/2205.05198

Ring Attention

https://arxiv.org/pdf/2205.05198
https://arxiv.org/pdf/2205.05198
https://arxiv.org/pdf/2205.05198
https://coconut-mode.com/posts/ring-attention/

3D parallelism

▪ Combining multiple ”orthogonal” forms of

the parallelisms

▪ On the right:

—Height dimension for data parallelism

—Width dimension for pipeline

parallelism

—Depth for model parallelism

▪ Typical to place tensor parallelism ranks

close to each other as the

communication is frequent and

bandwidth intensive

DeepSpeed 3D-parallelism

https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/

Deciding on parallelism strategy

▪ Considerations:

—How many GPUs are available

—How large is the model

—How fast is the network connectivity

between the GPUs in a node or between

nodes

—What kind of implementations are

available

▪ For example:

— Simple model, fits into a single GPU -> DP

— Large LLM -> A lot of GPUs and

parallelism required

DeepSpeed 3D-parallelism

https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/

Hands on and homework

▪ The hands-on part is an FSDP+TP example where the default

configuration does not fit into the memory of a single GPU

▪ Try to see if enabling tp helps (--tp=4)

▪ Experiment with the performance impact of TP, by reducing the number

of layers (--n-layers=8), and note iteration times for TP of 1,2,4

module use /soft/modulefiles

module load conda/2025-09-25

conda activate base

export PATH="/opt/pbs/bin:${PATH}"

export HF_HOME=./.cache
ezpz-launch python3 -m ezpz.examples.fsdp_tp --dataset random

VÄINÖ HATANPÄÄ

Assistant Computer Scientist
ALCF

	Slide 1: A Deep Dive into AI at Scale - Part 2
	Slide 2: Recap: Data Parallelism
	Slide 3: Recap: Data Parallelism
	Slide 4: Recap: Data Parallelism
	Slide 5: Recap: Data Parallelism
	Slide 6: Beyond data parallelism
	Slide 7: Collectives
	Slide 8: FSDP and ZeRO
	Slide 9: FSDP and ZeRO
	Slide 10: Tensor Parallelism (TP)
	Slide 11: Pipeline Parallelism
	Slide 12: Sequence/Context/Expert parallelism
	Slide 13: 3D parallelism
	Slide 14: Deciding on parallelism strategy
	Slide 15: Hands on and homework
	Slide 16

