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Recap: Data Parallelism

▪ Each GPU has an identical copy of the model

▪ Each GPU has unique data sample

Why?

▪ Training on a single GPU can be slow

Drawbacks:

▪ More complex to implement

▪ Requires communication
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Beyond data parallelism

▪ Data parallelism is very helpful when the model and the 

data fits into the memory of a single GPU and can be 

trained reasonably fast

▪ In the case of large language models (LLMs), the model 

sizes can be billions of parameters, requiring significant 

amount of memory

▪ Model parallelism can help!



Collectives

▪ GPUs can communicate 

with each other with 

various collective 

operations

▪ Implemented with a 

collective communication 

library such as Nvidia 

Collective 

Communications Library 

(NCCL)
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FSDP and ZeRO

DeepSpeed ZeRO

▪ Memory required also for gradients and 

optimizer states (e.g. momentum, variance)

— Parameters (BF16): 2 bytes per parameter

—Gradients (BF16): 2 bytes per parameter

—Optimizer states (FP32): 3x4=12 bytes per 

parameter

— Total of >=16 bytes per parameter, so at 

least 112GB for 7B parameter model, more 

than most GPUs 

https://www.deepspeed.ai/tutorials/zero/
https://www.deepspeed.ai/tutorials/zero/


FSDP and ZeRO

PyTorch FSDP

▪ FSDP distributes parameters, gradients, and optimizer states across data-parallel 

workers

— Various settings can be configured and the exact behavior can be adjusted

https://docs.pytorch.org/tutorials/intermediate/FSDP_tutorial.html
https://docs.pytorch.org/tutorials/intermediate/FSDP_tutorial.html


Tensor Parallelism (TP)

▪ Each tensor is split up into multiple chunks

▪ Each shard of the tensor resides on its designated GPU

▪ During processing each shard gets processed 

separately (and in parallel) on different GPUs 

— synced at the end of the step

▪ Challenges:

— Implementation

—Communication overhead

—Reduced compute kernel efficiency

▪ See:  Model Parallelism for additional details

Most slide contents by Sam Foreman

https://huggingface.co/docs/transformers/v4.15.0/parallelism
https://huggingface.co/docs/transformers/v4.15.0/parallelism
https://samforeman.me/talks/ai-for-science-2024/slides#/tensor-parallel-tp


Pipeline Parallelism

▪ Model is split up vertically (layer-level) 

across multiple GPUs

▪ Each GPU: 

— has a portion of the full model

— processes in parallel different stages 

of the pipeline (on a small chunk of 

the batch)

▪ See: 

—  PyTorch / Pipeline Parallelism

—DeepSpeed / Pipeline Parallelism

Most slide contents by Sam Foreman

1F1B schedule

Challenge:

Scheduling and 

“Pipeline Bubble”

https://pytorch.org/docs/main/distributed.pipelining.html
https://deepspeed.readthedocs.io/en/latest/pipeline.html
https://deepspeed.readthedocs.io/en/latest/pipeline.html
https://samforeman.me/talks/ai-for-science-2024/slides#/tensor-parallel-tp
https://www.researchgate.net/figure/llustration-of-1F1B-microbatch-scheduling-in-PipeDream-Image-based-on-48_fig4_362249737


Sequence/Context/Expert parallelism
Model architecture and application specific forms of 

parallelism

▪ Sequence parallelism (SP):

An extension of tensor parallelism (typically for 

LLMs), where the input sequence is scattered and 

gathered for specific operations

▪ Context parallelism:

Like SP but shards the sequence across all layers, 

including the attention, implemented with ring 

attention

▪ Expert parallelism: 

Specific for Mixture of Experts (MoE) models, where 

different “experts” are placed on different GPUs

https://arxiv.org/pdf/2205.05198

Ring Attention

https://arxiv.org/pdf/2205.05198
https://arxiv.org/pdf/2205.05198
https://arxiv.org/pdf/2205.05198
https://coconut-mode.com/posts/ring-attention/


3D parallelism

▪ Combining multiple ”orthogonal” forms of 

the parallelisms

▪ On the right:

—Height dimension for data parallelism

—Width dimension for pipeline 

parallelism

—Depth for model parallelism

▪ Typical to place tensor parallelism ranks 

close to each other as the 

communication is frequent and 

bandwidth intensive

DeepSpeed 3D-parallelism

https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/


Deciding on parallelism strategy

▪ Considerations:

—How many GPUs are available

—How large is the model

—How fast is the network connectivity 

between the GPUs in a node or between 

nodes

—What kind of implementations are 

available

▪ For example:

— Simple model, fits into a single GPU -> DP

— Large LLM -> A lot of GPUs and 

parallelism required

DeepSpeed 3D-parallelism

https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/


Hands on and homework

▪ The hands-on part is an FSDP+TP example where the default 

configuration does not fit into the memory of a single GPU

▪ Try to see if enabling tp helps (--tp=4)

▪ Experiment with the performance impact of TP, by reducing the number 

of layers (--n-layers=8), and note iteration times for TP of 1,2,4

module use /soft/modulefiles

module load conda/2025-09-25

conda activate base

export PATH="/opt/pbs/bin:${PATH}"

export HF_HOME=./.cache 
ezpz-launch python3 -m ezpz.examples.fsdp_tp --dataset random
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