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WHAT IS SCIENTIFIC VISUALIZATION 
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Converts multidimensional scientific data into visual representations

Techniques: isosurface extraction, volume rendering, flow visualization (pathlines, streamlines)

Typical workflow:

• Simulation → Data → Rendering → Analysis

Benefits of Scientific Visualization:

• Insight: reveals hidden patterns 

• Exploration: test hypotheses interactively

• Communication: conveys results clearly

• Decision support: guide simulations and experiments

Earth Mantle Convection
(Image: ALCF Visualization and Data Analytics Team)

Tumor Cell Trajectories 
(Image: ALCF Visualization and Data Analytics Team)

Dark Matter Model
(Image: ALCF Visualization and Data Analytics Team)

Airliner Landing Model
(Image: NASA)



WHY DEEP LEARNING FOR VISUALIZATION 
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Pain Points of Traditional Visualization
• Large-Scale Data:

• Storage & I/O bottlenecks
• Long post-processing times
• Limited interactivity with massive datasets

• Complex Workflows:
• Requires specialized visualization expertise
• Difficult for domain scientists to explore results directly

How Deep Learning Helps
• Data Efficiency: Learn compact neural representations → save storage & I/O
• Function Approximation

• Learn continuous field representations: f(x, y, z, t) → value
• Learn image formation: parameters → image
• Learn feature detection: flow → vortex labels

• Neural Rendering:
• Replace traditional rendering with learned 3D reconstructions (e.g., 3D Gaussian Splatting, NeRF)

• Accessibility:
• Large-language-model interfaces allow non-visualization experts to generate visualizations from natural-language prompts

Simulation 
(HPC/Experiment) Storage/Transfer

TB/PB Data

Post-processing & Rendering

Traditional Pipeline

Simulation 
(HPC/Experiment)

DL Pipeline



APPLICATIONS IN SCIENTIFIC VISUALIZATION 
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1⃣ Neural Field Representations
• Learn continuous fields → compact models: Implicit Neural Networks 
• Replace large grids; enable instant rendering: NeRF, 3D Gaussian Splatting

2⃣  Accelerated Rendering & Analysis
• Deep surrogates for ray-casting, isosurfaces, pathlines
• 10×–100× faster; real-time interaction

3⃣  Uncertainty & Feature Learning
• Predict mean / variance fields
• Detect vortices, shocks, key structures

4⃣  In-Situ & Interactive Visualization
• Train during simulations; avoid data dumps
• Live previews; steer simulations in real time

5⃣  AI-Assisted Interfaces
• Natural-language control via LLMs
• Let non-experts generate visualizations

Interactive Volume Visualization via Multi-Resolution Hash 
Encoding based Neural Representation [Qi et al. 2024]

InsituNet Pipeline [He et al. 2019]



EXAMPLE CASE STUDIES 
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Interactive Visualization of Time-Varying Flow Field using Particel Tracing Neural Network 

The workflow of our deep learning-based particle tracing 
neural network

💡  Motivation
• Modern scientific simulations generate massive, complex 3D flow 

data
• Traditional visualization relies on particle tracing, which involves:

◦ Placing seed points
◦ Retrieving velocity fields
◦ Advecting particles over time

• This process is computationally expensive due to:
◦ Heavy storage and I/O demands
◦ Costly advection and triangulation steps (especially for 

unstructured grids)
• Domain scientists often lack intuitive and interactive tools for 

exploring flow dynamics
• Need: scalable methods that reduce data movement and lower the 

barrier to effective visualization



EXAMPLE CASE STUDIES 
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Interactive Visualization of Time-Varying Flow Field using Particel Tracing Neural Network 

Our web-based visualization interface, integrated with our particle tracing neural networks, enables users to visualize and explore large 3D time-
varying flow fields interactively. In this example, the model trained on the Scalar Flow dataset was used to display pathlines, with the FTLE of the 
dataset serving as the scalar field defining the background volume and pathlines' color mapping. The training dataset was generated using 100,000 
seeds. It took one second to load the models and 2.7 seconds to infer 300 pathlines displayed in the visualization.



EXAMPLE CASE STUDIES 
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Distributed 3D Gaussian Splatting for High-Resolution Isosurface Visualization
3D Gaussian Splatting (3D-GS) → real-time, photorealistic rendering using anisotropic Gaussians.

Originally for graphics; now adapted to scientific data.

Challenge: prior SciVis 3D-GS limited to single GPU → not scalable for HPC data.

Our contribution: first distributed multi-node 3D-GS pipeline for large scientific datasets.



EXAMPLE CASE STUDIES 
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Distributed 3D Gaussian Splatting for High-Resolution Isosurface Visualization



EXAMPLE CASE STUDIES 
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Distributed 3D Gaussian Splatting for High-Resolution Isosurface Visualization

Platform: Polaris @ Argonne (4× A100 GPUs / 
node).

Performance:

• 3× speedup across 8 nodes (32 GPUs).

Quality: PSNR > 30, SSIM ≈ 0.99

• visually indistinguishable from ground truth.

Impact: Enables scalable, real-time, in-situ SciVis 
for multi-terabyte simulations.

Ground Truth

3D-GS



BENEFITS AND LIMITATIONS 
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Benefits:

• ⚡  Speed & interactivity: real-time previews on GPUs/AI accelerators

• 🧩  Compactness: huge data → small models

• 🔁  Integration: works with HPC simulations (in situ or post hoc)

Limitations:

• 🧠  Training cost and data prep still non-trivial

• 🌀  Generalization across flow regimes not guaranteed

• 🧾  Interpretability / uncertainty quantification open research topics



EMERGING DIRECTIONS 
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• Hybrid Physics + DL: 

PINNs, FNOs combine governing equations with learning.

Foundamental model for science 

• Distributed & In-situ Training: 

leveraging HPC systems (Polaris, Aurora, etc)

• Real-time Digital Twins: 

streaming sensors → neural visual models → control loops.

• AI-assisted Visualization Design: 

automatic viewpoint selection, feature highlighting.

NASA Foundation Models 
(https://www.nas.nasa.gov/SC23/research/project34.html)

Deep-learning-enhanced digital twinning of complex composite structures 
and real-time mechanical interaction [Xu et al. 2023]

https://www.nas.nasa.gov/SC23/research/project34.html


QUESTIONS? 


