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The Data Challenge

Understanding the physical processes governing
the universe using:

Observations & Simulations

Simulations & Observations: Massive scale
(TB-PB-scale outputs)

*  Non-linear, statistically noisy data &
extensive parameter spaces

« Traditional analysis methods overwhelmed

« Need: Automated intelligence processing



The Data Challenge - Why Al in Astro

Understanding the physical processes governing
the universe using:

Observations, simulations, and theory

Simulations & Observations: Massive scale
(TB-PB-scale outputs)

*  Highly correlated, high-dimensional data
« Traditional analysis methods overwhelmed

*  Need: Automated intelligence processing

Highly correlated, high-
dimensional data

« Pattern recognition

Scalable to massive datasets

Find non-obvious correlations

«  Self-/Un-supervised learning



Example Al applications in astrophysics

« Exoplanet detection in light curves

«  Galaxy morphology classification

*  Multi-modal searching - e.g. AstroCLIP
* Subgrid physics emulators
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Strengths & weaknesses: Traditional algs

Strengths Weaknesses
 Physically motivated, interpretable « T complexity = 11 computational expense
«  Well-characterized uncertainties * Programmed and constrained physics
« Extrapolates beyond training regimes * Misses unexpected non-obvious patterns

» Established validation/publication standards « Difficult to scale



Strengths & weaknesses: Modern Al algs

Strengths Weaknesses

« Efficiently handles high-dimensional « Needs large training datasets

feature spaces  Labeled data can be expensive

« Discovers non-obvious correlations e .
* Interpretability is often difficult

* Scales efficiently *  Uncertainty quantification imprecise

« Learns complex nonlinear relationships «  Often fails when extrapolating beyond

 Rapid inference after training training parameter space



Decision criteria: data volume, complexity,
interpretability, computational resources

Best approach: hybrid implementation

Physics-informed networks, ML for bottlenecks and traditional for
interpretation, Emulators validated against resolved simulations

Science First:

Planning
Projects




Decision criteria: data volume, complexity,
interpretability, computational resources

Best approach: hybrid implementation

Physics-informed networks, ML for bottlenecks and traditional for
interpretation, Emulators validated against resolved simulations

« Detfine clear science question first
» Does your dataset provide a specific advantage”?
* Determine where ML truly adds value

e Remain flexible on architecture choices

Science First:

Planning
Projects




Key Takeaways

Al transforms astrophysics through scale

Know the strengths and weaknesses: traditional & Al

Hybrid approaches often work best

 Science question drives method choice

Apply ML strategically to different data bottlenecks

snigdaa.ram@gmail.com
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Astrophysics overview

« Observation-specific challenges: '.. i 4‘ X /,,
* Instrumental noise and systematic errors R , |
* Incomplete sky coverage and selection effects \ “\ : .' . ‘ :
* Limited time resolution >
* No control over astrophysical “experiments” e ¥y . v

Conselice (2006)
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Astrophysics overview

 Simulation-specific challenges:

1.5

* Finite resolution limits resolved physics

* Subgrid physics requires approximations .

« Computational cost limits parameter exploration
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Loren-Aguilar et al. (2009)

Sharkey et al. (2011) 14



Data challenges made for Al

e Scale and Volume

PB+ scale datasets from surveys and simulations (LSST, Euclid, JWST; lllustrisTNG, FIRE, CAMELs)

Millions-billions of objects requiring classification (stars, galaxies, AGN, clusters, cosmic rays, binary
systems, planetary systems, etc.)

Real-time processing of incoming data streams (telescope data; dynamic simulation modeling)

«  Complexity

High-dimensional parameter spaces
Non-linear relationships between observables and physical properties

Complex analytical relationships in data (stellar history assumptions in observation, subgrid modeling in

simulations) -«



Data challenges made for Al

« Computational bottlenecks

«  Computationally expensive to explore full parameter space + Multiphysics

»  Cross-cell flux calculations, subgrid approximations, implicit time-stepping schemes, self-gravity solvers
replaceable with emulators “cheaply”

« Creating mock observations (radiative transfer calculations like ray-tracing) requires thousands of
Iterations

 Pattern recognition
 Identifying rare or unexpected phenomena in large datasets
« Extracting weak signals from noisy observations

*  Morphological classification of complex structures y



When to choose which tool

Decision criteria: data volume, complexity, interpretability, computational resources

Use traditional methods when: Use Al methods when:

Studying simple well-understood processes * Complex patterns in high dimensions

Small datasets or rare phenomena « Massive datasets requiring scalability
Interpretability and transparency critical * No clear analytical model exists/is resolved
Extrapolation beyond data required * Find unknown/missing correlations

Established methods work accurately and
efficiently

Large amounts training data available

Best approach: hybrid implementation
« Physics-informed networks with constraints
« ML tor bottlenecks, traditional for interpretation

« Emulators validated against resolved simulations, real observations Y
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